h1_key

當前位置:首頁 >新聞資訊 > 技術文章>英飛凌>HV SJ MOSFET工作在第三象限電流路徑探究
HV SJ MOSFET工作在第三象限電流路徑探究
2023-03-07 582次

  相信工程師在日常電源設計中,面對ZVS場景,經常會有以下困惑:如著名LLC,在死區(qū)工作,MOSFET寄生二極管續(xù)流,完成對結電容器充放電后,打開MOSFET減少設備消耗。

  細心的工程師可能會發(fā)現一個有趣的問題,我們以IPW60R024CFD7為例,假設死區(qū)時刻,流過二極管的電流為50A (125℃結溫),那么此刻MOSFET源漏極壓降Vsd=0.96V;(如下圖所示)


HV SJ MOSFET工作在第三象限電流路徑探究


  當死區(qū)結束,給到驅動信號,打開MOSFET,假設電流完全流過溝道,那么此刻Vsd=50*0.024*1.9=2.28V。(備注:1.9為125℃下電阻標準化比率)

HV SJ MOSFET工作在第三象限電流路徑探究


  這時候您可能心里就要犯嘀咕了:打開了MOSFET后,導通損耗反而變大了?電流到底是走溝道還是體二極管?如果損耗變大了那么我還需要打開MOSFET嗎?


  HV SJ MOSFET小知識

  SJ MOSFET的剖面圖如下所示:在這個結構中,我們可以看到三個器件模型:

  1.NMOS 導電溝道

  2.寄生NPN三極管(BJT)

  3.寄生PIN二極管


HV SJ MOSFET工作在第三象限電流路徑探究


  以上2種寄生結構分別對MOSFET器件的物理參數有著如下的限制:

  1.寄生BJT : 限制MOSFET器件dVds/dt能力,寄生BJT導通條件約為dVds/dt > VBE(BJT)/(Rp+ * Cdb),硬開關場景需要考慮該因素;

  2.寄生體二極管 : 限制MOSEFT器件dI/dt反向恢復能力(Qrr),硬開關場景需要考慮該因素。

  當MOSFET工作在開關狀態(tài)時,處于線性工作區(qū),其物理特性為等效電阻,(如下圖所示),二極管I-V曲線大家都耳熟能詳,那么當二者同時導通電流時,會是怎樣?簡單的幾何相加嗎?


HV SJ MOSFET工作在第三象限電流路徑探究


  探究MOSFET在第三象限的工作

  根據常識我們知道,對于一個給定的MOSFET,其導通電流的能力,宏觀上,與驅動電壓大小,MOSFET結溫都有著密切聯系。那么當MOSFET工作在第三象限是否還有類似的關系呢?我們這里采用控制變量法,通過仿真來一探究竟:

  首先我們看同一結溫(25℃)下,不同的驅動電壓I-V曲線:


HV SJ MOSFET工作在第三象限電流路徑探究




  由上仿真結果圖我們可以總結出:

  1.Vgs< Vgs(th)時,溝道尚未打開,MOSFET I-V曲線表現為二極管特性;

  2.Vgs>Vgs(Miller)時,溝道打開,MOSFET IV曲線在小電流下表現為純阻性(I-V曲線呈現線性關系),在大電流下表現為溝道、寄生體二極管二者共同作用(I-V曲線呈現非線性關系);

  3.在大電流場景下,Vgs電壓越高,MOSFET器件呈現阻性(I-V曲線斜率)越大。

  其次,我們再看一下不同結溫下 MOSFET I-V曲線,有如下結論:



  1.Vgs

  2.Vgs>Vgs(miller)時,溝道打開,小電流下,結溫越高,器件電阻率越高;大電流下,結溫越高,器件的電阻率越低。

  MOSFET器件溝道本身為少子(電子)導電,其溫度越高,電子遷移率越低,因此阻性越大;PIN二極管、BJT 均為雙極型載流子器件,其電導調制效應起主導作用,因此電流越大,阻性越低;溫度越高,(電導調制效應越強,載流子濃度越高)阻性越小。


  微觀世界的神秘風采

  好奇的工程師朋友們肯定想知道:在微觀世界下,是什么之間的相互作用,導致了上述的結果呢?我們在這里拋磚引玉,嘗試性的扒開微觀世界的面紗,一瞥其神秘風采:

  1.當Vgs=0時, P、N、N+ 摻雜層形成PIN二極管的結構,在外加電場的作用下,電子源源不斷的通過電源負極,注入到N+層,N層,使得輕摻雜的N層載流子濃度以非線性的形式快速提高,大大提高了通流能力;空穴同理。

  2.N+、P+、N摻雜層形成NPN BJT結構,變化的電場改變電子移動方向、速度(電流方向、大小),當電子(位移電流)流過P+層(等效電阻)以及P+層與襯底等效電容的產生的壓降>BJT的開通閾值電壓V??時,(即當外加電場變化率dVds/dt > VBE(BJT)/(R?+ * Cdb)時,)BJT導通。

  3.當Vgs > Vgs(miller)時,P+層足夠多的電子被吸附到柵氧層表面,形成導電溝道,此時MOSFET溝道導通:

  1)當電流較小時,MOSFET Vsd兩端管壓降 < 二極管開通閾值,不足以維持二極管內部反型層,二極管關閉,此刻電流完全流經溝道。

  2)當電流較大時,MOSFET Vsd 兩端管壓降 > 二極管開通閾值,二極管參與導通:PIN結構二極管內部電子空穴對均參與導電。由于Gate-Souce正電壓的存在,將會捕獲PIN結構二極管部分自由移動的電子空穴對,進而呈現出Vgs電壓越高,電阻率越大的結果。當在導電溝道內的電子移動速率、數量與PIN二極管的電子空穴對移動速率、數量達到動態(tài)平衡時,器件進入穩(wěn)態(tài)。


HV SJ MOSFET工作在第三象限電流路徑探究


  通過以上的分析,我們知道了MOSFET器件工作于第三象限時,電流路徑不是簡單的加和,是溝道跟寄生結構的共同作用效果。



HV SJ MOSFET工作在第三象限電流路徑探究


  能效非凡,低碳未來

  既然是這樣,那么為什么我們在器件處于第三象限時,我們還要打開驅動,讓溝道也參與導電呢?(此刻的阻抗明顯更大了)

  MOSFET寄生的結構雖然可以大大的降低導通阻抗,但是由于電導調制效應的存在,使得載流子復合消失過程時間大大增加,進而導致嚴重的關斷損耗。在實際的電路設計中,需要權衡開關損耗、導通損耗,折衷處理。通常,對于硅基 MOSFET來講,導通損耗與關斷損耗會控制在一個數量級上。在如今的電源產品中,開關頻率已經從幾十KHz覆蓋到幾個MHz,即使是ZVS的拓撲結構(比如LLC),由于關斷損耗的存在,也需要完全打開溝道,使得盡可能多的電流流經溝道,這樣在關斷時有,PIN結構二極管內載流子可以更快的復合消失,以減小器件關斷損耗(Qrr)。

  • 英飛凌的EiceDRIVER?高低邊柵極驅動器IR2181STRPBF
  • 其中,英飛凌的EiceDRIVER? 600 V 高低邊柵極驅動器 IC(IR2181STRPBF),具有典型的 1.9 A 拉電流和 2.3 A 灌電流,具有更高的帶載能力,可驅動 MOSFET和IGBT,為產品從開發(fā)設計到最終應用全面保駕護航。
    2023-12-27 423次
  • 英飛凌門極驅動正壓對功率半導體性能影響
  • 對于半導體功率器件來說,門極電壓的取值對器件特性影響很大。以前曾經聊過門極負壓對器件開關特性的影響,而今天我們來一起看看門極正電壓對器件的影響。文章將會從導通損耗,開關損耗和短路性能來分別討論。
    2023-12-22 397次
  • 英飛凌160V MOTIX?三相柵極驅動器IC
  • MOTIX?三相柵極驅動器集成電路6ED2742S01Q是英飛凌MOTIX?品牌的新成員,該品牌通過可擴展的產品組合提供低壓電機控制解決方案。它是一款160V絕緣體上硅(SOI)柵極驅動器IC,采用5x5 mm2 QFN-32封裝,帶有熱效率高的裸露功率焊盤,并集成了電源管理單元(PMU)。
    2023-07-21 456次
  • 英飛凌6.5A,2300V單通道隔離式柵極驅動器評估板
  • 英飛凌6.5A,2300V單通道隔離式柵極驅動器評估板(配SiC MOSFET)。EVAL-1ED3142MX12F-SIC采用半橋電路,用兩個柵極驅動IC?1ED3142MU12F來驅動IGBT、MOSFET和SiC MOSFET等功率開關。
    2023-06-28 514次
  • 英飛凌的 CoolSiC? XHP? 2 高功率模塊
  • 英飛凌科技股份公司為了滿足上述需求,在其 CoolSiC?功率模塊產品組合中增加了兩款新產品:FF2000UXTR33T2M1和 FF2600UXTR33T2M1。這些功率模塊采用新開發(fā)的3.3kV CoolSiC? MOSFET和英飛凌的.XT互連技術,封裝為XHP? 2,專門針對牽引應用量身定制。
    2023-06-28 494次

    萬聯芯微信公眾號

    元器件現貨+BOM配單+PCBA制造平臺
    關注公眾號,優(yōu)惠活動早知道!
    10s
    溫馨提示:
    訂單商品問題請移至我的售后服務提交售后申請,其他需投訴問題可移至我的投訴提交,我們將在第一時間給您答復
    返回頂部